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APPENDIX A
MATRIX ALGEBRA

A.l Introduction:

Fundamental to the intelligent use of computer
programs for structural analysis and design is at least a
basic knowledge of the methodology upon which these programs
are based. Since approximately 1958 the language of struc-
tural analysis and design has undergone a most profound
change. The new language is that of matrix algebra and
corresponding to it matrix notation. This is readily ob-
vious to anyone attempting to follow research publications
in this area and should serve to motivate the practicing
engineer to understand the new language in order to implement
the vast amount of new knowledge wisely. Actually the basic
methodology for structural analysis has not changed but only
become more fundamental and compact. The primary reason for
the change in the language is that computers can easily
manipulate large blocks of numbers and solve large numbers
of simultaneous eguations much more directly than they can
operate on methods such as moment distribution. Hence, a
brief definition of matrix notation, a description of basic
operations employing matrix algebra and some. example applica-
tions of matrix technigques follow. These methods form the
basis for STRUDL's internal operation.

Definition and Notation:

A matrix is defined as a rectanagular block, or
array, of numbers ccmposed of m rows and n columns. For
example:

11 42 & 1
[Alzxa = |31 azp| = |2 -8
a1 @32 1 -3
Here we have the matrix A composed of m = rows and n = 2
columns containing six coefficients aij‘ The first index on

the coefficient within the array defines its row position and
the second index defines its column positicon or aj, = L,

where a,;; is the element in the third row and first column.
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A.2 Matrix Overations:

I Acddition ané Subtraction:

Two or more matrices of the same size (those having
the same number of rows and columns) mav be added or subtracted.

6 1] [3 4] [9 5]
(C] = [A] + [B] = + =
2x2 2x2 2x2 "|2 -8| |-4 2] |-2 -8
) ~ 6 1] _[3 4]_[3 -37
(Dlaxz = [Alax2 - [Blax2 =|, 1|4 51716 -10
O €ij = a@jj *+ bjj . dij = ajj - bij

II Multiplication:

The product of two matrices (A) (B) is egqual to 2
matrix (C) having the same number or rows as (A) anéd the same
number of columns as (B). The product (C) can only exist
when the number of rows in (B) is the same as the number of
columns in (A). For example:

[A] (8] [c3
— — —
a1 3o bjy b1z byzl fe;n c1p g3
a1 ap 21 bz bo3zl = |cp1  cpp  cp3
azy a3z 2x3 |c33  c3p  C33
a a c c
e P 41 F42 Ca3)
4x3
The coefficients ¢, in matrix (C) are cdetermined
from the rela-zicn n -
cij = 2 ik B
where n is tiie numper of rcocws in (B) or the number ¢f cclumns
in (A). As an example, in the above procduct

12 = 311 b1 * a1 byp or cp3 221 P13 4+ 322 B3

cij = (ith row of [A] x the jth column of [B] )
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One way that may facilitate remembering the multi-
plication procedure is that

Example 1:

Find the product of matrix A and B.

4 11 - > 3
A=|1 2 B =
1 4
, -2 4
3x2 2x2

l 1 4 =
8 10

As a simple example of a matrix formulation
illustrative of the multiplication process consider the pin
connected truss of Figure A.2a.

-
8 -y

[AI[B] =

—
a2 N

3x2

Example 2:

. Fig. A.2a

At joint B we have the external forces Pl and Pz.

If we consider the equilibrium of Joint B, Ficure A.2b, we
have




LFy =0

or, Py =Fycos +FpcosB ... ... .. ... ....(1)
LFy =0 _ .
or,  Pp =-Fysin&+FysinB . . . . . ... ... ....(2)

Equations (1) and (2) may be written in matrix form as

P
1 cos < cos B F

Pz -sincc sin B F2

If we apply the above role for multiplication we
would see that Eg. (3) is the same as Eg.'s (1) and (2), we
can write Eg. (3) in an even more abbreviated manner as

(7]
(p]

n
—
.
—
m
~~
N~
g

]
M m
N -

[ U |

since  singl’

[Pl] (Al = [cosoc cosg} and {F)

Basically then matrix notation, such as Eg. (4),
is a short hand way of writing a system of eguations.

Example 3:

Suppose we are given the following relationships

Zl = 6}'1 + y2 yl =. 3Xl + 4X2
22 = 2)’1 - 8Y2 y2 = 4Xl + 2X2
23 = ¥y - 3)’2

ané one wishes to express the z values as a function of the
x values. This can be dcne bv direct substituzion as fcllows



21

Z3

6 (3Xq+ 4Xp) + 1 (-4X3+ 2Xp) = [ (6)(3) + (1)(-4)] X +[(6)(4)+(1)(2)] X;
14Xy + 26X,
2(3Xy+ 4Xp) -8(-4X1+ 2X5)
-38X1 -8Xp

L(2)(3)+ (-8)(-4)] X3+ [(2)(4)+(-8)(2)] Xp

1(3Xl+ 4X2) '3('4)(1“‘ 2X2)
15%; - 2%,

(L)(E)+(-3)(-4) X3+ (1)(4)+(-3)(2) Xo

This operation also could have been performed using matrix
multiplication by writing

{2} 3x1 = [ATze2 {Y) 3x1, () 2x1 = (81 22 (X} 201

and then by substitution

{Z] 3x1 = [Alzxo [B1 2x2 = (X} 2x1 = [Clax2 {X] 2x1

Where

[Clzxp = [Al3xp [Bl pxp and cij = Eﬁi ajk by

Or in general

M
6 1
[Cl3xz = |2 -8 l:i g
1 -3
14 26
38 -8
|15 -2
o 14Xl 26X2
o’ {2} = L300 {x} = |38x; -8x;
15xl -2%o

Notice that the results are identical.
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III Matrix Inversion:

The inverse, (A)~T, of a square matrix (A) is

defined such that

(Al [A1°Y = [A7°1 [A] = [1] (5)

where (I) is defined as the unit matrix. (I) is a square
matrix with 1l's on the main diagonal and zeros elsewhere.
For example, a 3x3 unit matrix is

1 0 O
(IJ={0 1 O
0 0 1

We can visualize operations with the inverse matrix by a
parallel with division i.e., if

Z = xy
then X = 2/y = z(y)'l
note that (yYy) L =vrv =1 (6)

observe the similarity of Ec.'s (5) and (8).

Now that we know what the inverse matrix is cdefined
o be, how do we £ind it. Suppose we are given the set of
ecguations

31171 * 212%2 * 213%3 =71 a7 a1p  a13] (*1 Yy
321%1 + 322%2 *323%3 T Y2 or lagy @pp apz| (X2p=4{Yp
331%1 * @32%2 * A33*3 % V3 331 @432 433 13 Y3
and we wish to express the X as function of ¥, that is

biivy * bioyz * Biavz = x1 by; b1p biz] (Y1) (X
bp1yy * boovp + baayz = Xz O |bpy by bz qvar =X
b31¥y *+ bagyp * b3z¥z = *3 b3y b3z b3z] |¥3) (X3

what we are asking is that knowing the ccefiicients of (32),
hew may one determine the ccefficients in the inverse matrix (3)°?



Take as the values of Y, Yy, = 1, Yy, = 0, Yy = 0,
then

311%1 * 31%p * 13Xz = 1
aZle + 822X2 + 823X3 = 0

i
o

dz31X1 * azpXp * azzx3z

by1(1) + byo(Q) + byz(0)
B21(1) + bp(Q) + bp3(0)

X1 Xy = by

X2+ X2 = bgy
b31§l) + b32(0) + b33(0) = X3 . X3 = b3lA

Therefore, if we determine the values of x by solving
the first set of simultaneous equations, we will have the first

column of the (B) matrix. If we then take y, = 0, Yy = 1, Y3

and solve the first set we obtain the solutions constituting

the second column of (B). Therefore if we have N equations in

N unknowns we must solve N sets of simultaneous equations to
obtain the N columns of the (B) matrix.

The above relationship can be written in matrix

(A1 {x} = {¥}and (8] (v} = {x]

Notice that if we substitute for (X) in the first of these we
obtain

form as

[A] cé} {r} = caaarl (v} = {v}

and that the cnly wayv this relationship can hold is if

[A] [A]"L = (1]

Therefore, if we can find the inverse of a given matrix by
some method, we can check its correctness by multiplying the
given matrix by its inverse to see if the unit matrix is
obtained. The reader may wish to do this to augment his
understanding of matrix multiplication and to verify the
preceding inversion. Many volumes have been written on
different methods of inversion and simultaneous eguations
solution. These methods will not be discussed here, and it
is left to the initiative of the reader to familiarize him-
self with them.
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IV Svmmetrv and Transvosition:

Two additional definitions of particular importance
in structural theory employing matrices are the symmetric
matrix and the transpose matrix. A symmetric matrix is a
square matrix where the coefficients are symmetrical about
the main diagonal (i.e., a;. = ). For example, '

- a..
ij ji

§ N8 7 8|
6 4 15 75
NN . .

7 15 -gi\\EL¢——Maln Diagonal
LS_ 75 02

A matrix (B) is defined to be the transpose of the

matrix (A) if and only if bij = aji' or
3 1
(B1=C(A1T = |2 4| where (A7 =|3 2 -4
-4 6 _ -1 4 6

or to put it another way, the rows and columns have been

interchanged.
Example 4:

Find the transpose of

A=l 5 -6
3 8 12

Interchanging Rows & Columns:

1 3
AT =|5 8
|-6 12
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A.3 Apvlication to Structural Analysis:

Example 5:

Analyze the truss shown in Figure A. 3a by using
the principles of matrix algebra.

P3

6!

A aﬁﬁ’,\x 10"[ | POK 41[2..':1 | B '
®
®» 6 |®

)

C D : \ P4
I ~ o
I R3
GEOMETRY LOADING 1 LOADING 2 MEASUREMENTS

Fig. A.3a

The most fundamental way of analyzing this problem
is to write the two equations of equilibrium available at
each joint. First observe that any loading system may be
defined by two components at joints A and B, which are free
to move in any manner, and a component at joint D which is
constrained to move only in the horizontal direction. Also
note that these five components are sufficient to define any
system of applied loads P and if the displacements in the
five directions were known, the displaced state of the entire
truss would be completely defined. Hence let us refer to
this structure as having five degrees of freedom. Additionally
there are three constrained displacement guantities and cor-
respondingly three unknown reaction components Rl' R2, and R3.
It is important to note that in all structures there will exist
this one-to-one correspondence between joint displacements and
known joint loads sufficient to toctally describe the loading
and displacement behavior of the structure. Now, assuming
the applied loads and unknown reactions as positive in the
sense of the arrows and the unknown bar forces as tension, or
pulling on the joints, write the eight available equations of
joint equilibrium.

: — ] -] ~ )
Pl +Fy=0 Py 0-1 0 0 0O F1
Po-F1=0 P, #2 0 o o o |F,
Pz - Fp - 0.8 F4 = 0
372 N Pz |={0+1 0 +0.8 O Fz
Py - F5 =0
P 00 0 0 =+l F
Pg - Fz - 0.6 F4 =0 4 4
Ps| (00 1 w08 o |Fg

A-10



Ry +Fp+06Fs=0 [Ry| [(1 0 0o -0
R3*F3=0

" L]
(@
0 0
[)V) [l
]

0O 0 0O -0.8

Rz (00 .1 0

In matrix form these can be written as

[Alsxs (F) sxo

CARlaxs {F} sy0

{P)sx2
{R}3x2

The solution may then be cbtained by solving the
simultanecus eguations or by the inverse method.

-1
{Flsx2 = [Alaxs (P} sx2

The soluticn of this problem may be found to be

0. +1.

-1. 0

[F}=ta11 (P} = |-0.715 0
0. 0

. -1. 0.
{rR} = tAR1 [F} = | 0. 0
0 0

five

jo
oON U A

N

o

t is significant to note that the solution to this
proplem recuires cnly a knowledge of the geometry (defined by

the ccordinates of the joints) and the magnitude of the applie
loads. This is only possible because the system is statically
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determinate and the solution does not require consideration
of the conditions of compatibility. A condition of deter-
minacy is defined when the degree of freedom NP is egual to
the number of unknown internal forces NF. This becomes impor-
tant in using STRUDL when it is desired to carry out an
initial approximate determinate analysis in the preliminary
design stage of an indeterminate structure. Notice that this
problem is the same as Problem 2.2 in Chapter 2.

Example 6:

Next consider the beam shown in the following sketch.

3KLF

\\\

HINGE o LOADING AND GEOMETRY

. |
2 P4 ExTERNAL COORDINATES
N (DEGREES OF FREEDOM)

1 2 4
3 < /\ °<3 },;,\, INTERNAL COORDINATES
Fig. A.3b

Without the hinge the structure is indeterminate
to the first degree and hence the solution would reguire a
knowledge of the beam proverties and application of the con-
dition of compatibility and stress-strain. By inserting the
hinge the beam is made determinate and the analysis requires
only the equations of equilibrium. In general, defining the
number of equilibrium equations reguires a determination of
the degree of freedom. Again this determination may be made
by finding the number of displacement quantities required to
completely define the end displacements of each element in
the structure. 1In a continuous beam it is necessary to define
the end displacements normal to the element axis and the end
rotations. In this example there are four unknown displace-
ment quantities reguired to satisfy this condition, while
there are three known displacement quantities associated with
the three unknown reaction ccmponents.

To write the eguations of joint equilibrium it is

first necessary to transfer the applied member loads to the
ends by looking at element equilibrium.
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N £1’>F2 FSC{F T ),
fVl Vo V3 V4
F
v,:il_tf_Z_-la v==i1__*__2_.+18
1T T SR
Fz 4 F -F3+F4
V3=___3._:__4—-6 V4———-—-;——+6
4
Fig- A.3c

Then joint equilibrium becomes:

WA R (P (e e cﬁm
Rs

v v
!?2 1 Vo "’T—f V3 4
. Pz
Fig. A.3d

Py +Fp=0 Py 0. 1 0. o.| [F]
PZ - F3 =0 PZ = 0. 0. 1. 0 F2
Pz +Vy -V3 =0 |Pg+24 -1/12 -1/12 +1/4 +1/4 Fs
Py - F4 =0 | Py 0. 0 -l/4 -1/4 Fu
Ry - Fy = 0 R | [ 1 o o o] [r
Rp - V1 =0 Rp+18| = [+1/12 +1/12 O 0 Fy
Rz + V4 =0 R3+6 Lo 0 -l/4 -174| |Fg3
The solution of this prcbzem becomes: F4

[+1 +3 12 +3|[ 0]

1 felafel. |71 0 0. © 0.|_
(417 {F) = {F}= 0. 1 0. 0.|| 24.
0 0 0. 1 0 |
288 _
1. o 0. o] of. (-288. -0 ﬂ -288.
. o F} ={rRl=|112 12 0. o.| © = |(-24. -18 ) |- 42
A 0. o -4 -l/a|| o ( 0. -6 )‘ -6
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Example 7:

Analyze the frame shown in Figure A.3e. Neglect

axial deformations.

2 KF
P4 .
X 1
o
—
(oF ¢
)
Hinge/ -
. ©
A hin
100 P
GEOMETRY LOADING 1
Fig. A.3e

Fig. A.3f
EXTERNAL CO-ORDINATES

>

o—e 12F%

hoh

LOADING 2

Fig. A.3g

INTERNAL CO-ORDINATES



Py - F1= 0
ey Fa
Rz + V1= 0 'Rz + = <€ +10= P
10 - P3
Ry - Ay = 0O V4
P4
e S
V4 (8) ‘F3 'F4 =0
Vs

V4 = F8 + F4

B
5
= Tk
Fg
o Vs (5) 'Fs ‘Fs = 0'
Fs * Fs \r/s’FS
Vg = v
= 6 Pey 4
e nassdd
Ve = Rz
R4
Fig. A.3h
"Ry + Ry + 0=20
1 3
LOA
Ry + Ry -20 = 0} DING 1
Ry + R =
1* Rz +l2=00  oome 2
R2 + R4 +0=20
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Pz' F2 'F3 = 0

Fz +F Fe + Fs _
Pardgt -0
Ps -F5 = 0
Pg -Fg =

° Fg +Fg _
Ry -Vg = Rz - -

R4 ‘As - 0



Py =Fy

7

P2 = F2 + F3

Pz = Fy

Py = -1/8 F3 -1/8 F, +1/6 Fg +1/6 Fg

Ps = Fg

Pg = Fg.

Ry = 1/6 Fg -1/6 Fg : )
Ry +10 = 1/10 Fy -1/10 Fy

Rz =+1/6 Fg +1/6 Fg

Rg -20 = -Rp = 1710 Fy + 1/10 Fp -10 —> Ry -10 = 1/10 F; +1/10 2 |

Ry +12 = -1/6 Fg -1/6 Fg )
R, = -1/10 F -1/10 F
2 1 2 L LOADING 2
R3 = 1/6 F5 +1/6 Fs
Ry = 1710 F} +1/10 Fp

(r} = a1 (F]

P ]t 0o o o o o ]
Pl 0 1 1 0 0 o [r
Ps|_ |0 0 0 1 0 o0 I|F;
Py| |0 0 -1/8 -1/8+1/6 +1/8]fF,
Ps| /0 0 0 0o 1 0o |[Fs
Ps| [0 0 0 0o o 1 _JFg

CASE 1



REACTIONS

R = [Ag] F

LOADING 1

Rl 0

Rg | | O

(ALl =

E§ OO0 oo hi]

0

Ry+10| [-1/10 -1/10

0

R4-30| | 1710 1/10

O 0O oo+ o

0 0 -1/6 -1/6
0 0 0 0
0 0O 1/6 1/6
0 0 0 0
0 0 0 0]
1 8 -8/6 -8/6
-1 -8  +8/8 +8/6
110 0 0

0o 0 1 0

e O c 1]
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+12)]

0
-1/10
0

-12
9.6

L}/ 10

o o 0 -1/6 -1/6]
-1100 0 0 0
O 0 0 /6 1/
/100 0 0 0
Rz = O

Ry = -9.6
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